问题1 在看代码的时候,发现代码中使用到了
1 2 3 4 5 6 7 8 9 10 11 12 13 - (void)viewDidload { [super viewDidload]; [self bindData]; } - (void)bindData { [[RACObserve(self, propertyA) ignore:nil] subscribeNext:^(NSArray *dataA) { NSLog(@"use dataA"); }]; }
但是在这个类的propertyA是在init之后去设置的,在viewDidload之前。也就是在使用RAC订阅属性变化信号之前,但是use dataA打印出来了。猜测RACObserve宏生成信号在调用subscribeNext中,直接就调用了dataA的block的逻辑。但是感觉比较奇怪,不应该是propertyA变化的时候才会调用dataA的block的逻辑吗。
现在具体看一下,一个信号的创建和订阅的源码:
信号创建: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 + (RACSignal *)createSignal:(RACDisposable * (^)(id<RACSubscriber> subscriber)) didSubscribe { return [RACDynamicSignal createSignal:didSubscribe]; } + (RACSignal *)createSignal:(RACDisposable * (^)(id<RACSubscriber> subscriber)) didSubscribe { RACDynamicSignal *signal = [[self alloc] init]; signal->_didSubscribe = [didSubscribe copy]; return [signal setNameWithFormat:@"+createSignal:"]; }
在创建一个信号的时候,会传进来一个叫didSubscribe的block,该信号会把它存下来。
信号订阅 RACSignal的subscribeNext方法:
1 2 3 4 5 - (RACDisposable *)subscribeNext:(void (^)(id x))nextBlock { NSCParameterAssert(nextBlock != NULL); RACSubscriber *o = [RACSubscriber subscriberWithNext:nextBlock error:NULL completed:NULL]; return [self subscribe:o]; }
在singal的subscribeNext中,生成了一个subscriber。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 + (instancetype)subscriberWithNext:(void (^)(id x))next error:(void (^)(NSError *error))error completed:(void (^)(void))completed { RACSubscriber *subscriber = [[self alloc] init]; subscriber->_next = [next copy]; subscriber->_error = [error copy]; subscriber->_completed = [completed copy]; return subscriber; }
subscriber保存了nextBlock,errorBlock,completedBlock等数据信息
接着看signal的subscribe方法,改方法的参数是subscribeNext方法中生成的subscriber对象
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 - (RACDisposable *)subscribe:(id<RACSubscriber>)subscriber { NSCParameterAssert(subscriber != nil); RACCompoundDisposable *disposable = [RACCompoundDisposable compoundDisposable]; subscriber = [[RACPassthroughSubscriber alloc] initWithSubscriber:subscriber signal:self disposable:disposable]; if (self.didSubscribe != NULL) { RACDisposable *schedulingDisposable = [RACScheduler.subscriptionScheduler schedule:^{ RACDisposable *innerDisposable = self.didSubscribe(subscriber); [disposable addDisposable:innerDisposable]; }]; [disposable addDisposable:schedulingDisposable]; } return disposable; }
1 2 3 4 5 6 7 8 9 10 - (RACDisposable *)schedule:(void (^)(void))block { NSCParameterAssert(block != NULL); if (RACScheduler.currentScheduler == nil) return [self.backgroundScheduler schedule:block]; block(); return nil; }
在signal的subscribe方法中,调用了RACScheduler.subscriptionScheduler schedule 方法,直接就将传入的block调用了,最终调用了signal的didSubscribe block,将subscriber传入。
再看一下RACObserve在生成一个signal的时候,传入的didSubscribe block逻辑的怎样的,以下是RACObserve相关源码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 #define RACObserve(TARGET, KEYPATH) \ ({ \ _Pragma("clang diagnostic push") \ _Pragma("clang diagnostic ignored \"-Wreceiver-is-weak\"") \ __weak id target_ = (TARGET); \ [target_ rac_valuesForKeyPath:@keypath(TARGET, KEYPATH) observer:self]; \ _Pragma("clang diagnostic pop") \ })
在NSObject的RACPropertySubscribing分类中定义rac_valuesForKeyPath:observer:self:方法
继续:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 - (RACSignal *)rac_valuesForKeyPath:(NSString *)keyPath observer:(__weak NSObject *)observer { return [[[self rac_valuesAndChangesForKeyPath:keyPath options:NSKeyValueObservingOptionInitial observer:observer] map:^(RACTuple *value) { // -map: because it doesn't require the block trampoline that -reduceEach: uses return value[0]; }] setNameWithFormat:@"RACObserve(%@, %@)", self.rac_description, keyPath]; }
继续:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 - (RACSignal *)rac_valuesAndChangesForKeyPath:(NSString *)keyPath options:( NSKeyValueObservingOptions)options observer:(__weak NSObject *) weakObserver { NSObject *strongObserver = weakObserver; keyPath = [keyPath copy]; NSRecursiveLock *objectLock = [[NSRecursiveLock alloc] init]; objectLock.name = @" org.reactivecocoa.ReactiveCocoa.NSObjectRACPropertySubscribing"; __weak NSObject *weakSelf = self; RACSignal *deallocSignal = [[RACSignal zip:@[ self.rac_willDeallocSignal, strongObserver.rac_willDeallocSignal ?: [RACSignal never] ]] doCompleted:^{ // Forces deallocation to wait if the object variables are currently // being read on another thread. [objectLock lock]; @onExit { [objectLock unlock]; }; }]; //重点关注这里,createSignal之后的参数就是该信号的didSubscribe block逻辑了。 return [[[RACSignal createSignal:^ RACDisposable * (id<RACSubscriber> subscriber) { // Hold onto the lock the whole time we're setting up the KVO // observation, because any resurrection that might be caused by our // retaining below must be balanced out by the time -dealloc returns // (if another thread is waiting on the lock above). [objectLock lock]; @onExit { [objectLock unlock]; }; __strong NSObject *observer __attribute__((objc_precise_lifetime)) = weakObserver; __strong NSObject *self __attribute__((objc_precise_lifetime)) = weakSelf; if (self == nil) { [subscriber sendCompleted]; return nil; } return [self rac_observeKeyPath:keyPath options:options observer: observer block:^(id value, NSDictionary *change, BOOL causedByDealloc, BOOL affectedOnlyLastComponent) { [subscriber sendNext:RACTuplePack(value, change)]; }]; }] takeUntil:deallocSignal] setNameWithFormat:@"%@ -rac_valueAndChangesForKeyPath: %@ options: %lu observer: %@", self.rac_description, keyPath, (unsigned long)options, strongObserver.rac_description]; }
可以看到在RACObserver宏定义的signal的didSubscriber block中又调用了rac_observeKeyPath:keyPath options: observer: block
继续(太长了只贴重点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 - (RACDisposable *)rac_observeKeyPath:(NSString *)keyPath options:( NSKeyValueObservingOptions)options observer:(__weak NSObject *) weakObserver block:(void (^)(id, NSDictionary *, BOOL, BOOL))block { NSCParameterAssert(block != nil); NSCParameterAssert(keyPath.rac_keyPathComponents.count > 0); //省略数十行 // Call the block with the initial value if needed. if ((options & NSKeyValueObservingOptionInitial) != 0) { id initialValue = [self valueForKeyPath:keyPath]; NSDictionary *initialChange = @{ NSKeyValueChangeKindKey: @(NSKeyValueChangeSetting), NSKeyValueChangeNewKey: initialValue ?: NSNull.null, }; block(initialValue, initialChange, NO, keyPathHasOneComponent); } //省略数十行 }
说明一下,options是NSKeyValueObservingOptions属于NS_OPTIONS
1 2 3 4 5 6 7 8 9 10 typedef NS_OPTIONS(NSUInteger, NSKeyValueObservingOptions) { NSKeyValueObservingOptionNew = 0x01, NSKeyValueObservingOptionOld = 0x02, NSKeyValueObservingOptionInitial NS_ENUM_AVAILABLE(10_5, 2_0) = 0x04, NSKeyValueObservingOptionPrior NS_ENUM_AVAILABLE(10_5, 2_0) = 0x08 };
在以上方法中,它判断了,传入的options是否是NSKeyValueObservingOptionInitial类型,而在调用rac_observeKeyPath: options: observer: block:的时候,option就是传的NSKeyValueObservingOptionInitial,所以会直接调用传进来的block,在rac_valuesAndChangesForKeyPath: options: observer:中调用rac_observeKeyPath: options: observer: block:的时候传入block里面的逻辑是这样:
1 [subscriber sendNext:RACTuplePack(value, change)];
综上所述,RACObserver生成的signal在调用subscribeNext方法订阅该信号的时候,会直接调用一次订阅信号之后next block的逻辑,所以即便是属性变化之后订阅属性变化信号,它也会默认先调用一次next block的逻辑。
正常kvo检测转化成信号的逻辑:
在RACObserver初始化的过程中,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 - (RACDisposable *)rac_observeKeyPath:(NSString *)keyPath options:( NSKeyValueObservingOptions)options observer:(__weak NSObject *) weakObserver block:(void (^)(id, NSDictionary *, BOOL, BOOL))block { NSCParameterAssert(block != nil); NSCParameterAssert(keyPath.rac_keyPathComponents.count > 0); //省略数十行 NSKeyValueObservingOptions trampolineOptions = (options | NSKeyValueObservingOptionPrior) & ~NSKeyValueObservingOptionInitial; RACKVOTrampoline *trampoline = [[RACKVOTrampoline alloc] initWithTarget: self observer:strongObserver keyPath:keyPathHead options:trampolineOptions block:^(id trampolineTarget, id trampolineObserver, NSDictionary *change) { // If this is a prior notification, clean up all the callbacks added to the // previous value and call the callback block. Everything else is deferred // until after we get the notification after the change. if ([change[NSKeyValueChangeNotificationIsPriorKey] boolValue]) { [firstComponentDisposable() dispose]; if ((options & NSKeyValueObservingOptionPrior) != 0) { block([trampolineTarget valueForKeyPath:keyPath], change, NO, keyPathHasOneComponent); } return; } // From here the notification is not prior. NSObject *value = [trampolineTarget valueForKey:keyPathHead]; // If the value has changed but is nil, there is no need to add callbacks to // it, just call the callback block. if (value == nil) { block(nil, change, NO, keyPathHasOneComponent); return; } // From here the notification is not prior and the value is not nil. // Create a new firstComponentDisposable while getting rid of the old one at // the same time, in case this is being called concurrently. RACDisposable *oldFirstComponentDisposable = [ firstComponentSerialDisposable swapInDisposable:[RACCompoundDisposable compoundDisposable]]; [oldFirstComponentDisposable dispose]; addDeallocObserverToPropertyValue(value); // If there are no further key path components, there is no need to add the // other callbacks, just call the callback block with the value itself. if (keyPathHasOneComponent) { block(value, change, NO, keyPathHasOneComponent); return; } // The value has changed, is not nil, and there are more key path components // to consider. Add the callbacks to the value for the remaining key path // components and call the callback block with the current value of the full // key path. addObserverToValue(value); block([value valueForKeyPath:keyPathTail], change, NO, keyPathHasOneComponent); }]; // Stop the KVO observation when this one is disposed of. [disposable addDisposable:trampoline]; //省略数十行 }
在该方法中生成了一个RACKVOTrampoline中间对象,看它的源码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 - (id)initWithTarget:(__weak NSObject *)target observer:(__weak NSObject *) observer keyPath:(NSString *)keyPath options:(NSKeyValueObservingOptions) options block:(RACKVOBlock)block { NSCParameterAssert(keyPath != nil); NSCParameterAssert(block != nil); NSObject *strongTarget = target; if (strongTarget == nil) return nil; self = [super init]; if (self == nil) return nil; _keyPath = [keyPath copy]; _block = [block copy]; _weakTarget = target; _unsafeTarget = strongTarget; _observer = observer; [RACKVOProxy.sharedProxy addObserver:self forContext:(__bridge void *)self]; [strongTarget addObserver:RACKVOProxy.sharedProxy forKeyPath:self.keyPath options:options context:(__bridge void *)self]; [strongTarget.rac_deallocDisposable addDisposable:self]; [self.observer.rac_deallocDisposable addDisposable:self]; return self; } - (void)dealloc { [self dispose]; } #pragma mark Observation - (void)dispose { NSObject *target; NSObject *observer; @synchronized (self) { _block = nil; // The target should still exist at this point, because we still need to // tear down its KVO observation. Therefore, we can use the unsafe // reference (and need to, because the weak one will have been zeroed by // now). target = self.unsafeTarget; observer = self.observer; _unsafeTarget = nil; _observer = nil; } [target.rac_deallocDisposable removeDisposable:self]; [observer.rac_deallocDisposable removeDisposable:self]; [target removeObserver:RACKVOProxy.sharedProxy forKeyPath:self.keyPath context:(__bridge void *)self]; [RACKVOProxy.sharedProxy removeObserver:self forContext:(__bridge void *)self]; } //系统的代理方法,其实是由RACKVOProxy.sharedProxy对象转发的,RACKVOProxy.sharedProxy才是真正处理系统消息的对象。 - (void)observeValueForKeyPath:(NSString *)keyPath ofObject:(id)object change:( NSDictionary *)change context:(void *)context { if (context != (__bridge void *)self) { [super observeValueForKeyPath:keyPath ofObject:object change:change context:context]; return; } RACKVOBlock block; id observer; id target; @synchronized (self) { block = self.block; observer = self.observer; target = self.weakTarget; } if (block == nil || target == nil) return; block(target, observer, change); }
可以看到RACKVOTrampoline对象替代原来使用KVO的对象,作为系统的代理,实现了代理方法。实际上,真正调用系统KVO注册的方法的时候,是往一个叫RACKVOProxy.sharedProxy的全局单例对象注册的。RACKVOTrampoline是具体处理KVO消息的对象,在RACKVOPorxy.shareProxy对象中注册了所有使用RAC KVO的系统消息,再由它转发给具体的RACKVOTrampoline进行处理,而在RACKVOTrampoline处理的时候,调用了RACKVOtrampoline初始化的时候传进来的block。之后在RACKVOTrampoline参数block调用过程中就会调用sendNext方法了,往外面发信号数据。
以下是RACKVOProxy.sharedProxy
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 @interface RACKVOProxy() @property (strong, nonatomic, readonly) NSMapTable *trampolines; @property (strong, nonatomic, readonly) dispatch_queue_t queue; @end @implementation RACKVOProxy + (instancetype)sharedProxy { static RACKVOProxy *proxy; static dispatch_once_t onceToken; dispatch_once(&onceToken, ^{ proxy = [[self alloc] init]; }); return proxy; } - (instancetype)init { self = [super init]; if (self == nil) return nil; _queue = dispatch_queue_create("org.reactivecocoa.ReactiveCocoa.RACKVOProxy ", DISPATCH_QUEUE_SERIAL); _trampolines = [NSMapTable strongToWeakObjectsMapTable]; return self; } - (void)addObserver:(__weak NSObject *)observer forContext:(void *)context { NSValue *valueContext = [NSValue valueWithPointer:context]; dispatch_sync(self.queue, ^{ [self.trampolines setObject:observer forKey:valueContext]; }); } - (void)removeObserver:(NSObject *)observer forContext:(void *)context { NSValue *valueContext = [NSValue valueWithPointer:context]; dispatch_sync(self.queue, ^{ [self.trampolines removeObjectForKey:valueContext]; }); } - (void)observeValueForKeyPath:(NSString *)keyPath ofObject:(id)object change:( NSDictionary *)change context:(void *)context { NSValue *valueContext = [NSValue valueWithPointer:context]; __block NSObject *trueObserver; dispatch_sync(self.queue, ^{ trueObserver = [self.trampolines objectForKey:valueContext]; }); if (trueObserver != nil) { [trueObserver observeValueForKeyPath:keyPath ofObject:object change: change context:context]; } }
RACKVOProxy.sharedProxy管理了整个RAC 中KVO的处理系统KVO消息的中间对象和系统KVO消息的转发。
综合上面的代码可以看出,正是由于各种中间对象替用户实现了代理方法起了代理对象的作用,用户才能把代码写的更加紧凑清晰。
问题2 看以下代码,假设combineLatest之后得到的信号是A
1 2 3 4 5 [[RACSignal combineLatest:@[[RACObserve(self, propertyA) ignore:nil], [ RACObserve(self, propertyB) ignore:nil]]] subscribeNext:^(RACTuple *tuple) { }];
1.使用combineLatest的时候,第一次订阅会不会触发subscribeNext后面的block
2.combineLatest中的信号,是同时调用了sendNext之后会触发A调用sendNext,还是只需要其中有一个信号调用了sendNext会触发A调用sendNext
看一下combineLatest源码:
1 2 3 4 5 6 7 8 + (RACSignal *)combineLatest:(id<NSFastEnumeration>)signals { return [[self join:signals block:^(RACSignal *left, RACSignal *right) { return [left combineLatestWith:right]; }] setNameWithFormat:@"+combineLatest: %@", signals]; }
继续 join: block:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 + (instancetype)join:(id<NSFastEnumeration>)streams block:(RACStream * (^)(id, id))block { //第一段 RACStream *current = nil; // Creates streams of successively larger tuples by combining the input // streams one-by-one. for (RACStream *stream in streams) { // For the first stream, just wrap its values in a RACTuple. That way, // if only one stream is given, the result is still a stream of tuples. if (current == nil) { current = [stream map:^(id x) { return RACTuplePack(x); }]; continue; } current = block(current, stream); } if (current == nil) return [self empty]; //第二段 return [current map:^(RACTuple *xs) { // Right now, each value is contained in its own tuple, sorta like: // // (((1), 2), 3) // // We need to unwrap all the layers and create a tuple out of the result. NSMutableArray *values = [[NSMutableArray alloc] init]; while (xs != nil) { [values insertObject:xs.last ?: RACTupleNil.tupleNil atIndex:0]; xs = (xs.count > 1 ? xs.first : nil); } return [RACTuple tupleWithObjectsFromArray:values]; }]; }
这部分代码分2段,第一段是将两个信号合并的逻辑,具体的合并逻辑是由外面传进来的block确定的。第二段是通过map将信号的值重新做了处理,第一段得到的信号属于signal of signals的类型,第二段将它打平。
再看一下combineLatestWith:方法
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 - (RACSignal *)combineLatestWith:(RACSignal *)signal { NSCParameterAssert(signal != nil); return [[RACSignal createSignal:^(id<RACSubscriber> subscriber) { RACCompoundDisposable *disposable = [RACCompoundDisposable compoundDisposable]; __block id lastSelfValue = nil; __block BOOL selfCompleted = NO; __block id lastOtherValue = nil; __block BOOL otherCompleted = NO; void (^sendNext)(void) = ^{ @synchronized (disposable) { if (lastSelfValue == nil || lastOtherValue == nil) return; [subscriber sendNext:RACTuplePack(lastSelfValue, lastOtherValue)]; } }; RACDisposable *selfDisposable = [self subscribeNext:^(id x) { @synchronized (disposable) { lastSelfValue = x ?: RACTupleNil.tupleNil; sendNext(); } } error:^(NSError *error) { [subscriber sendError:error]; } completed:^{ @synchronized (disposable) { selfCompleted = YES; if (otherCompleted) [subscriber sendCompleted]; } }]; [disposable addDisposable:selfDisposable]; RACDisposable *otherDisposable = [signal subscribeNext:^(id x) { @synchronized (disposable) { lastOtherValue = x ?: RACTupleNil.tupleNil; sendNext(); } } error:^(NSError *error) { [subscriber sendError:error]; } completed:^{ @synchronized (disposable) { otherCompleted = YES; if (selfCompleted) [subscriber sendCompleted]; } }]; [disposable addDisposable:otherDisposable]; return disposable; }] setNameWithFormat:@"[%@] -combineLatestWith: %@", self.name, signal]; }
在以上代码中,调用了当前信号的subscribeNext方法,同时也调用了需要合并的信号的subscribeNext方法。subscribeNext方法block中调用了sendNext block,这个block是在combineLatestWith中定义,判断两个信号是否已经调用过sendNext,如果都同时掉用过sendNext就会触发combineLatest信号调用didSubscribe block,最终触发订阅combineLatest信号的传入的subscribeNext后的block。
综合上面的分析,类似于以下的使用方式
1 2 3 [[RACSignal combineLatest:@[[RACObserve(self, propertyA) ignore:nil], [RACObserve(self, propertyB) ignore:nil]]] subscribeNext:^(RACTuple *tuple) { }];
第一次订阅就会触发subscribeNext之后的block逻辑,并且是RACObserve这种类型的combineLatest才会,最上面已经分析了RACObserver生成的信号在第一次订阅调用的时候信号就会调用sendNext。